SWITCHMODE TM

NPN Bipolar Power Transistor For Switching Power Supply Applications

The BUL44 have an applications specific state-of-the-art die designed for use in 220 V line operated Switchmode Power supplies and electronic light ballasts.

Features

- Improved Efficiency Due to Low Base Drive Requirements: High and Flat DC Current Gain h_{FE} Fast Switching
 - No Coil Required in Base Circuit for Turn–Off (No Current Tail)
- Full Characterization at 125°C
- Tight Parametric Distributions are Consistent Lot-to-Lot
- Pb–Free Package is Available*

MAXIMUM RATINGS

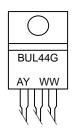
F	Rating	Symbol	Value	Unit
Collector-Emitter S	Sustaining Voltage	V _{CEO}	400	Vdc
Collector-Base Bro	eakdown Voltage	V _{CES}	700	Vdc
Emitter-Base Volta	age	V _{EBO}	9.0	Vdc
Collector Current	– Continuous – Peak (Note 1)	I _C I _{CM}	2.0 5.0	Adc
Base Current	– Continuous – Peak (Note 1)	I _B I _{BM}	1.0 2.0	Adc
Total Device Dissip Derate above 25°C	oation @ T _C = 25°C	PD	50 0.4	W W/°C
Operating and Sto	rage Temperature	T _J , T _{stg}	-65 to 150	°C

THERMAL CHARACTERISTICS

Characteristics	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	2.5	°C/W
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	62.5	°C/W
Maximum Lead Temperature for Soldering Purposes 1/8" from Case for 5 Seconds	ΤL	260	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.


1. Pulse Test: Pulse Width = 5 ms, Duty Cycle \leq 10%.


ON Semiconductor®

http://onsemi.com

POWER TRANSISTOR 2.0 AMPERES, 700 VOLTS, 40 AND 100 WATTS

MARKING DIAGRAM

BUL44	= Device Code
A	= Assembly Location
Y	= Year
WW	= Work Week
G	= Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping
BUL44	TO-220	50 Units / Rail
BUL44G	TO–220 (Pb–Free)	50 Units / Rail

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

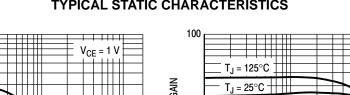
ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector–Emitter Sustaining Voltage $(I_C = 100 \text{ mA}, L = 25 \text{ mH})$	V _{CEO(sus)}	400	-	-	Vdc
Collector Cutoff Current (V_{CE} = Rated V_{CEO} , I_B = 0)	I _{CEO}	_	-	100	μAdc
	I _{CES}	- - -	_ _ _	100 500 100	μAdc
Emitter Cutoff Current ($V_{EB} = 9.0 \text{ Vdc}, I_C = 0$)	I _{EBO}	-	-	100	μAdc

ON CHARACTERISTICS

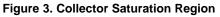
$ \begin{array}{l} \text{Base-Emitter Saturation Voltage} \\ (I_{C} = 0.4 \text{ Adc}, I_{B} = 40 \text{ mAdc}) \\ (I_{C} = 1.0 \text{ Adc}, I_{B} = 0.2 \text{ Adc}) \end{array} $	V _{BE(sat)}		0.85 0.92	1.1 1.25	Vdc
	V _{CE(sat)}	- - -	0.20 0.20 0.25 0.25	0.5 0.5 0.6 0.6	Vdc
$ \begin{array}{l} \mbox{DC Current Gain} \\ (I_C = 0.2 \mbox{ Adc, } V_{CE} = 5.0 \mbox{ Vdc}) \\ (I_C = 0.4 \mbox{ Adc, } V_{CE} = 1.0 \mbox{ Vdc}) \\ (I_C = 1.0 \mbox{ Adc, } V_{CE} = 1.0 \mbox{ Vdc}) \\ (I_C = 10 \mbox{ mAdc, } V_{CE} = 5.0 \mbox{ Vdc}) \\ (I_C = 10 \mbox{ mAdc, } V_{CE} = 5.0 \mbox{ Vdc}) \end{array} $	h _{FE}	14 - 12 12 8.0 7.0 10	- 32 20 20 14 13 22	34 - - - - -	-

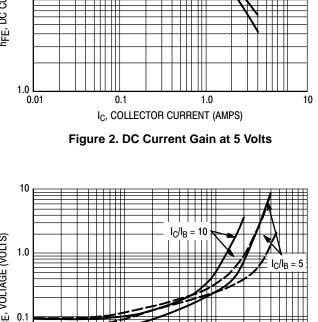
DYNAMIC CHARACTERISTICS


Current Gain Bandwidth ($I_C = 0.5$ Adc, $V_{CE} = 10$ Vdc, f = 1.0 MHz)			f _T	-	13	-	MHz	
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)			C _{OB}	-	38	60	pF	
Input Capacitance (V _{EB} = 8.0 V)			C _{IB}	-	380	600	pF	
	$(I_{C} = 0.4 \text{ Adc})$ $I_{B1} = 40 \text{ mAdc}$	1.0 μs	(T _C = 125°C)		-	2.5 2.7	-	
Dynamic Saturation Voltage: Determined 1.0 µs and	11 000 10	3.0 μs	(T _C = 125°C)			1.3 1.15	-	
3.0 μs respectively after rising I_{B1} reaches 90% of final I_{B1}	$(I_{C} = 1.0 \text{ Adc})$ $I_{B1} = 0.2 \text{ Adc}$	1.0 μs	(T _C = 125°C)	V _{CE(dsat)}	-	3.2 7.5	-	Vdc
	$V_{CC} = 300 \text{ V}$	3.0 μs	(T _C = 125°C)		_ _	1.25 1.6		

SWITCHING CHARACTERISTICS: Resistive Load (D.C. \leq 10%, Pulse Width = 20 $\mu s)$


Turn–On Time	$(I_{C} = 0.4 \text{ Adc}, I_{B1} = 40 \text{ mAdc})$ $I_{B2} = 0.2 \text{ Adc}, V_{CC} = 300 \text{ V})$	(T _C = 125°C)	t _{on}	-	40 40	100 -	ns
Turn–Off Time	$(I_{C} = 0.4 \text{ Adc}, I_{B1} = 40 \text{ mAdc})$ $I_{B2} = 0.2 \text{ Adc}, V_{CC} = 300 \text{ V})$	(T _C = 125°C)	t _{off}	-	1.5 2.0	2.5 -	μs
Turn–On Time	$(I_{C} = 1.0 \text{ Adc}, I_{B1} = 0.2 \text{ Adc})$ $I_{B1} = 0.5 \text{ Adc}, V_{CC} = 300 \text{ V})$	(T _C = 125°C)	t _{on}	-	85 85	150 -	ns
Turn–Off Time	$(I_{C} = 1.0 \text{ Adc}, I_{B1} = 0.2 \text{ Adc})$ $I_{B2} = 0.5 \text{ Adc}, V_{CC} = 300 \text{ V})$	(T _C = 125°C)	t _{off}	-	1.75 2.10	2.5 -	μs


SWITCHING CHARACTERISTICS: Inductive Load (V_{clamp} = 300 V, V_{CC} = 15 V, L = 200 $\mu\text{H})$


	(clain,						
Fall Time	$(I_{C} = 0.4 \text{ Adc}, I_{B1} = 40 \text{ mAdc})$ $I_{B2} = 0.2 \text{ Adc})$	(T _C = 125°C)	t _{fi}		125 120	200 _	ns
Storage Time		(T _C = 125°C)	t _{si}		0.7 0.8	1.25 -	μs
Crossover Time		(T _C = 125°C)	t _c	-	110 110	200 -	ns
Fall Time	$(I_{C} = 1.0 \text{ Adc}, I_{B1} = 0.2 \text{ Adc} $ $I_{B2} = 0.5 \text{ Adc})$	(T _C = 125°C)	t _{fi}		110 120	175 -	ns
Storage Time		(T _C = 125°C)	t _{si}	-	1.7 2.25	2.75 -	μS
Crossover Time		(T _C = 125°C)	t _c	-	180 210	300 -	ns
Fall Time	$(I_{C} = 0.8 \text{ Adc}, I_{B1} = 160 \text{ mAdc})$ $I_{B2} = 160 \text{ mAdc})$	(T _C = 125°C)	t _{fi}	70 -	_ 180	170 -	ns
Storage Time		(T _C = 125°C)	t _{si}	2.6 _	_ 4.2	3.8 -	μS
Crossover Time		(T _C = 125°C)	t _c		190 350	300 -	ns

TYPICAL STATIC CHARACTERISTICS

V_{CE}

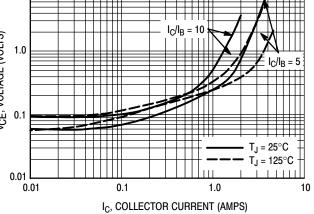


Figure 4. Collector-Emitter Saturation Voltage

CIB

 $T_J = 25^{\circ}C$

f = 1 MHz

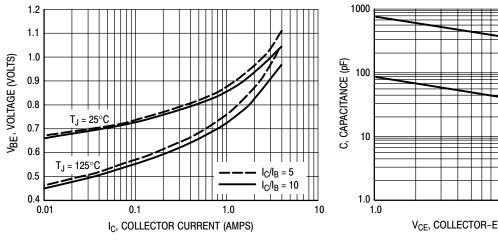


Figure 5. Base-Emitter Saturation Region

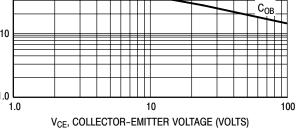
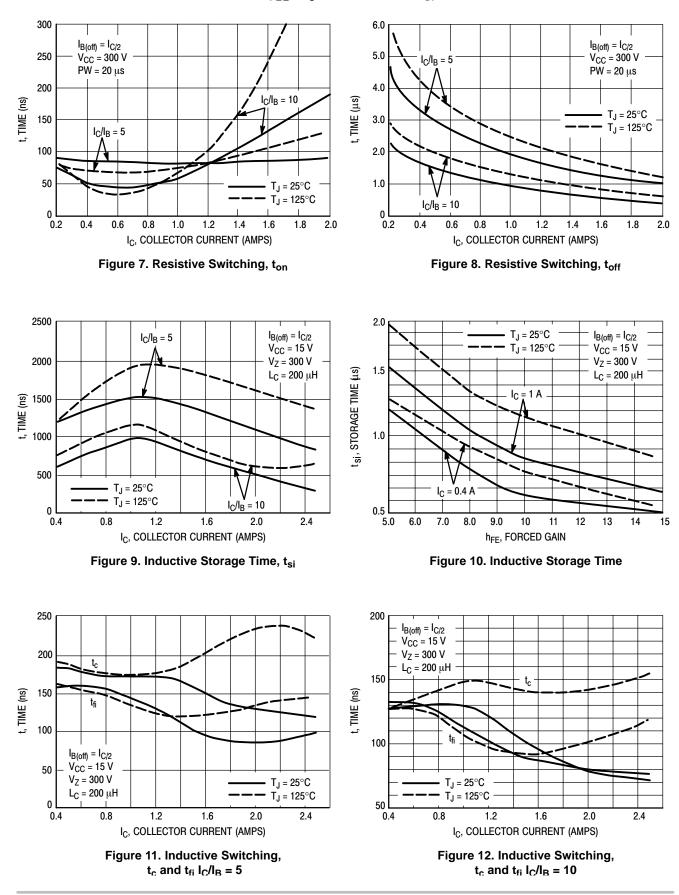
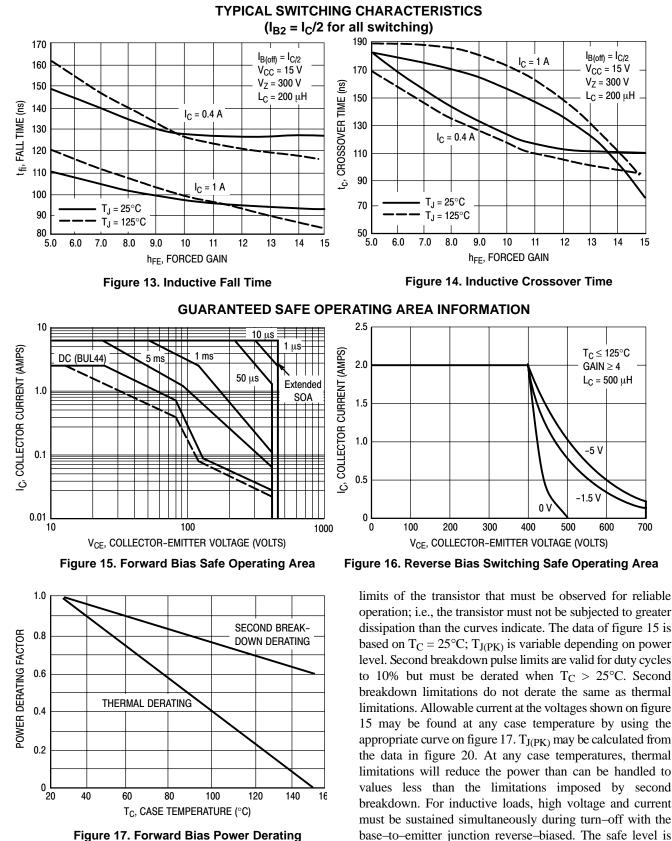
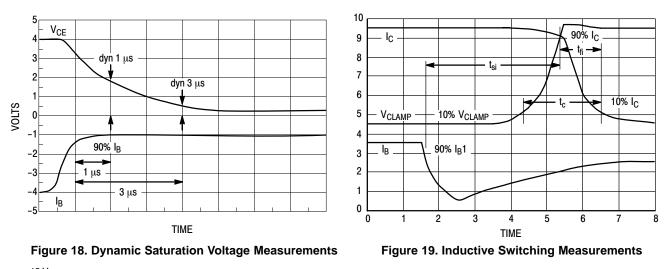




Figure 6. Capacitance

TYPICAL SWITCHING CHARACTERISTICS ($I_{B2} = I_C/2$ for all switching)



There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate I_C-V_{CE}

specified as a reverse-biased safe operating area (Figure 16).

This rating is verified under clamped conditions so that the

device is never subjected to an avalanche mode.

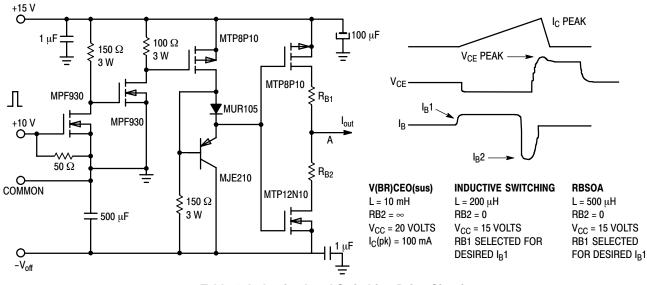
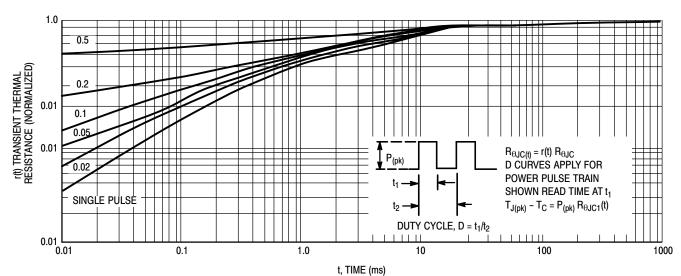
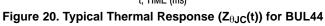
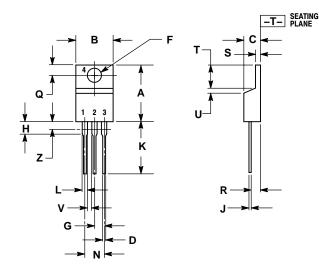




Table 1. Inductive Load Switching Drive Circuit



TYPICAL THERMAL RESPONSE

PACKAGE DIMENSIONS

TO-220AB CASE 221A-09 ISSUE AA

NOTES:

 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 CONTROLLING DIMENSION: INCH.
DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.570	0.620	14.48	15.75
В	0.380	0.405	9.66	10.28
С	0.160	0.190	4.07	4.82
D	0.025	0.035	0.64	0.88
F	0.142	0.147	3.61	3.73
G	0.095	0.105	2.42	2.66
Н	0.110	0.155	2.80	3.93
J	0.018	0.025	0.46	0.64
K	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
Ν	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.39
Т	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
۷	0.045		1.15	
Ζ		0.080		2.04

STYLE 1: PIN 1. BASE 2. COLLECTOR 3. EMITTER 4. COLLECTOR

SWITCHMODE is a trademark of Semiconductor Components Industries, LLC.

ON Semiconductor and IIII are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use persons, and reasonable attorney fees andising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use persons and sensing out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized to applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850 ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.